Mouse schwann cells need both NRG1 and cyclic AMP to myelinate.

نویسندگان

  • Peter Arthur-Farraj
  • Katharina Wanek
  • Janina Hantke
  • Catherine M Davis
  • Anuj Jayakar
  • David B Parkinson
  • Rhona Mirsky
  • Kristján R Jessen
چکیده

Genetically modified mice have been a major source of information about the molecular control of Schwann-cell myelin formation, and the role of β-neuregulin 1 (NRG1) in this process in vivo. In vitro, on the other hand, Schwann cells from rats have been used in most analyses of the signaling pathways involved in myelination. To correlate more effectively in vivo and in vitro data, we used purified cultures of mouse Schwann cells in addition to rat Schwann cells to examine two important myelin-related signals, cyclic adenosine monophosphate (cAMP), and NRG1 and to determine whether they interact to control myelin differentiation. We find that in mouse Schwann cells, neither cAMP nor NRG1, when used separately, induced markers of myelin differentiation. When combined, however, they induced strong protein expression of the myelin markers, Krox-20 and P(0) . Importantly, the level of cAMP signaling was crucial in switching NRG1 from a proliferative signal to a myelin differentiation signal. Also in cultured rat Schwann cells, NRG1 promoted cAMP-induced Krox-20 and P(0) expression. Finally, we found that cAMP/NRG1-induced Schwann-cell differentiation required the activity of the cAMP response element binding family of transcription factors in both mouse and rat cells. These observations reconcile observations in vivo and on neuron-Schwann-cell cultures with studies on purified Schwann cells. They demonstrate unambiguously the promyelin effects of NRG1 in purified cells, and they show that the cAMP pathway determines whether NRG1 drives proliferation or induces myelin differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuregulin-1 Type III Determines the Ensheathment Fate of Axons

The signals that determine whether axons are ensheathed or myelinated by Schwann cells have long been elusive. We now report that threshold levels of neuregulin-1 (NRG1) type III on axons determine their ensheathment fate. Ensheathed axons express low levels whereas myelinated fibers express high levels of NRG1 type III. Sensory neurons from NRG1 type III deficient mice are poorly ensheathed an...

متن کامل

The transcription factors SCIP and Krox-20 mark distinct stages and cell fates in Schwann cell differentiation.

We have studied the transcription factors SCIP and Krox-20 in differentiating Schwann cells-during normal development, in experimentally induced degenerating and regenerating peripheral nerves, and in cell culture-and have compared the expression of these regulators to a battery of genes that mark distinct stages in Schwann cell differentiation. In the myelinating Schwann cell lineage, we find ...

متن کامل

Neuron-glia signaling and the protection of axon function by Schwann cells.

The interaction between neurons and glial cells is a feature of all higher nervous systems. In the vertebrate peripheral nervous system, Schwann cells ensheath and myelinate axons thereby allowing rapid saltatory conduction and ensuring axonal integrity. Recently, some of the key molecules in neuron-Schwann cell signaling have been identified. Neuregulin-1 (NRG1) type III presented on the axona...

متن کامل

The collapsin response mediator protein 5 onconeural protein is expressed in Schwann cells under axonal signals and regulates axon-Schwann cell interactions.

Collapsin response mediator protein 5 (CRMP5) is one of the rare peripheral nerve antigens that is a target of autoantibodies in a paraneoplastic peripheral neuropathy. The pattern of axonal and myelin alterations suggests that CRMP5 is involved in axon-Schwann cell interaction. We examined CRMP5 expression and function in primary cultures of Schwann cells and neurons and at various development...

متن کامل

Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination.

In the developing nervous system, constitutive activation of the AKT/mTOR (mammalian target of rapamycin) pathway in myelinating glial cells is associated with hypermyelination of the brain, but is reportedly insufficient to drive myelination by Schwann cells. We have hypothesized that it requires additional mechanisms downstream of NRG1/ErbB signaling to trigger myelination in the peripheral n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glia

دوره 59 5  شماره 

صفحات  -

تاریخ انتشار 2011